Data Science Campus Machine Learning Fundamentals

Alex Noyvirt Claus Sthamer Data Science Campus, ONS

• • • • • • • • • • • • • • • · · •

26 January 2022

Data Science Campus

- What is Machine Learning
- Types of ML
- Supervised ML
 - Training & Test Data
 - Supervised ML Algorithms
 - Data Preparation
 - Over & under-fitting
 - Hyperparameters
- Unsupervised

What is Machine Learning

In, 1959 Arthur Samuel defined machine learning as a *"Field of study that gives computers the ability to learn without being explicitly programmed"*

Instead of humans formulating all the rules needed, we leave the ML algorithm to find all the rules needed to carry out the task.

- Supervised there are labels
- Unsupervised no labels available
- Semi-Supervised Learning
- Reinforcement Learning

Supervised learning – some terminology

Target, Labels

م مر ا	مرما	~ ~ ~	<u>لم م ل</u>		:	
INC	iep	enc	lent	Var	lab	ies

Feature 1	Feature 2	Feature 3	Feature 4	Feature 5	Feature 6	Feature 7	Dependant variable

Supervised Learning – Training and Test Data

Data Science Campus

Supervised Learning – an example

How to recognise a cat? But not just one cat but all cats? What are the rules?

ML can make an inference of the class of new pictures, it gives a score for the most likely class

Prediction Threshold for Cat class = 0.55 Cat Class score > Threshold \rightarrow Cat

We do not know how we recognise things, but we are very good at it

 \rightarrow The most powerful ML methods are the least interpretable

Data Science Campus

6 - C

Please follow: https://rb.gy/hmlc76

Data Science Campus

7 - A

Supervised Learning - ML Algorithms

No Model is perfect \rightarrow find the best fitting one \rightarrow minimise error

- Regression & Classification
- Linear Regression
- Support Vector Regressor
- Logistic Regression
- SVM
- KNN
- Decision Trees

9 - A

T Data Science Campus

- Regression analysis is used in statistical modelling for estimating relationships between independent variables and dependent variables
- Y = a + bX
- It is the simplest Machine Learning algorithm. It is y used to predict values of a continuous variable, e.g. price, age or salary
- Find the best fit line.
- Least square estimation for estimation of accuracy
- Multi-Dimensional → Hyperplane

SVR - Support Vector Regressor

- Linear model is inflexible
- SVR is a better fit for these data points
- Non-linear fit
- Needs more training data

Data Science Campus

- A Linear function would be a bad model for these data points
- Logistic Regression mainly used for binary classification
- The output can only between 0 and 1, e.g. yes/no or 0/1, Cat / Not-Cat
- Find the S-curve (Sigmoid Function) to classify the sample
- Non-linear transformation of Linear Regression
- Linear Regression predicts the outcome
- Here we predict:
 - Ln[p/(1-p)] = a + BX (Log of the odds ratio)
 - P is curve between 0 and 1
 - If $p > 0.5 \rightarrow$ Prediction is 1, if $p < 0.5 \rightarrow$ prediction is 0

Data Science Campus

12 - A

SVM – Support Vector Machines

- Linear model for classification
- Creates line or hyperplane in an N-dimensional space to separates data into classes
- N is the number of features
- Find Hyperplane with maximum distance between data points of both classes
- Maximizing the margin → future data points can be classified with more confidence
- Data points on the maximum margin are called: Support vectors
- Support vectors influence position & orientation of the Hyperplane
- Hyperplane = Decision Boundary

Data Science Campus

- K-Nearest Neighbours
- Finds distance to K closest data points
- Smaller distance \rightarrow more similar
- Classification votes for most frequent label of K neighbours
- Regression average the labels
- Calculates distance between every data pair
- High calculation costs in higher dimensional space and sample size square of sample size

Data Science Campus

14 - C

- Classification and Regression
- Tree-like model of decisions
- Nodes, branches and leaves
- Learning of simple decision rules: if-then-else
- The deeper the tree the more complex rules
- Splits are based on reducing Classification error

Random Forest

- Many decision trees
- Random sub-samples, random features
- Voting score

T Data Science Campus

15 - C

- Clustering: splitting or partitioning data into groups according to similarity.
- Latent variable models: discovering 'hidden' constructs based on observed data.
- **Dimension reduction**: reducing the number of features in a dataset, while retaining as much information as possible.
- Outlier detection: finding unusual data values.

Data Science Campus